Synthesis 2018; 50(03): 593-598
DOI: 10.1055/s-0036-1591515
paper
© Georg Thieme Verlag Stuttgart · New York

Glycosylation of Stannyl Ceramides Promoted by Modified Montmorillonite­ in Supercritical Carbon Dioxide

Authors

  • José Antonio Morales-Serna  *

    a   Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México   Email: joseantonio.moralesserna@xanum.uam.mx
  • Bao N. Nguyen

    b   School of Chemistry, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
  • Eréndira García-Ríos

    c   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México
  • Rubén Gaviño

    c   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México
  • Jorge Cárdenas

    c   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México
  • Gustavo García de la Mora

    d   Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México

The authors are very grateful for the economic support acquired from CONACyT (Institutional Links FONCICYT-275694), FERMIC S. A. de C.V. and PRODEP-SEP (DSA/103.5/16/10288). J.A.M.S. and B.N.N. acknowledge support from the Royal Society, British Council, Newton Fund and Newton Fellowship Alumni Program.
Further Information

Publication History

Received: 12 August 2017

Accepted after revision: 06 October 2017

Publication Date:
07 November 2017 (online)


Graphical Abstract

Preview

Abstract

The direct glycosylation of ceramides in supercritical carbon dioxide (scCO2) successfully proceeded to produce β-glycolipids in high yield and with full stereoselectivity. The reaction is promoted by montmorillonite modified with a superacid (CF3SO3H). The value of this protocol was demonstrated in the efficient synthesis of isoglobotrihexosylceramide (iGB3).

Supporting Information